Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol ; 147(1): 67, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581586

RESUMO

Transcription factor EB (TFEB) is a master regulator of genes involved in the maintenance of autophagic and lysosomal homeostasis, processes which have been implicated in the pathogenesis of GBA-related and sporadic Parkinson's disease (PD), and dementia with Lewy bodies (DLB). TFEB activation results in its translocation from the cytosol to the nucleus. Here, we investigated TFEB subcellular localization and its relation to intracellular alpha-synuclein (aSyn) accumulation in post-mortem human brain of individuals with either incidental Lewy body disease (iLBD), GBA-related PD/DLB (GBA-PD/DLB) or sporadic PD/DLB (sPD/DLB), compared to control subjects. We analyzed nigral dopaminergic neurons using high-resolution confocal and stimulated emission depletion (STED) microscopy and semi-quantitatively scored the TFEB subcellular localization patterns. We observed reduced nuclear TFEB immunoreactivity in PD/DLB patients compared to controls, both in sporadic and GBA-related cases, as well as in iLBD cases. Nuclear depletion of TFEB was more pronounced in neurons with Ser129-phosphorylated (pSer129) aSyn accumulation in all groups. Importantly, we observed previously-unidentified TFEB-immunopositive perinuclear clusters in human dopaminergic neurons, which localized at the Golgi apparatus. These TFEB clusters were more frequently observed and more severe in iLBD, sPD/DLB and GBA-PD/DLB compared to controls, particularly in pSer129 aSyn-positive neurons, but also in neurons lacking detectable aSyn accumulation. In aSyn-negative cells, cytoplasmic TFEB clusters were more frequently observed in GBA-PD/DLB and iLBD patients, and correlated with reduced GBA enzymatic activity as well as increased Braak LB stage. Altered TFEB distribution was accompanied by a reduction in overall mRNA expression levels of selected TFEB-regulated genes, indicating a possible early dysfunction of lysosomal regulation. Overall, we observed cytoplasmic TFEB retention and accumulation at the Golgi in cells without apparent pSer129 aSyn accumulation in iLBD and PD/DLB patients. This suggests potential TFEB impairment at the early stages of cellular disease and underscores TFEB as a promising therapeutic target for synucleinopathies.


Assuntos
Doença por Corpos de Lewy , Humanos , alfa-Sinucleína/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Encéfalo/patologia , Neurônios Dopaminérgicos/metabolismo , Corpos de Lewy/patologia , Doença por Corpos de Lewy/patologia
3.
NPJ Parkinsons Dis ; 10(1): 47, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424059

RESUMO

Mutations in the α-Synuclein (αS) gene promote αS monomer aggregation that causes neurodegeneration in familial Parkinson's disease (fPD). However, most mouse models expressing single-mutant αS transgenes develop neuronal aggregates very slowly, and few have dopaminergic cell loss, both key characteristics of PD. To accelerate neurotoxic aggregation, we previously generated fPD αS E46K mutant mice with rationally designed triple mutations based on the α-helical repeat motif structure of αS (fPD E46K→3 K). The 3 K variant increased αS membrane association and decreased the physiological tetramer:monomer ratio, causing lipid- and vesicle-rich inclusions and robust tremor-predominant, L-DOPA responsive PD-like phenotypes. Here, we applied an analogous approach to the G51D fPD mutation and its rational amplification (G51D → 3D) to generate mutant mice. In contrast to 3 K mice, G51D and 3D mice accumulate monomers almost exclusively in the cytosol while also showing decreased αS tetramer:monomer ratios. Both 1D and 3D mutant mice gradually accumulate insoluble, higher-molecular weight αS oligomers. Round αS neuronal deposits at 12 mos immunolabel for ubiquitin and pSer129 αS, with limited proteinase K resistance. Both 1D and 3D mice undergo loss of striatal TH+ fibers and midbrain dopaminergic neurons by 12 mos and a bradykinesia responsive to L-DOPA. The 3D αS mice have decreased tetramer:monomer equilibria and recapitulate major features of PD. These fPD G51D and 3D mutant mice should be useful models to study neuronal αS-toxicity associated with bradykinetic motor phenotypes.

4.
J Parkinsons Dis ; 14(1): 17-33, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38189713

RESUMO

Lewy bodies (LBs) are pathological hallmarks of Parkinson's disease and dementia with Lewy bodies, characterized by the accumulation of α-synuclein (αSyn) protein in the brain. While LBs were first described a century ago, their formation and morphogenesis mechanisms remain incompletely understood. Here, we present a historical overview of LB definitions and highlight the importance of semantic clarity and precise definitions when describing brain inclusions. Recent breakthroughs in imaging revealed shared features within LB subsets and the enrichment of membrane-bound organelles in these structures, challenging the conventional LB formation model. We discuss the involvement of emerging concepts of liquid-liquid phase separation, where biomolecules demix from a solution to form dense condensates, as a potential LB formation mechanism. Finally, we emphasize the need for the operational definitions of LBs based on morphological characteristics and detection protocols, particularly in studies investigating LB formation mechanisms. A better understanding of LB organization and ultrastructure can contribute to the development of targeted therapeutic strategies for synucleinopathies.


Assuntos
Doença por Corpos de Lewy , Doença de Parkinson , Corrida , Sinucleinopatias , Humanos , Corpos de Lewy/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Encéfalo/metabolismo , Sinucleinopatias/metabolismo , Doença por Corpos de Lewy/patologia
5.
Sci Adv ; 9(46): eadj1454, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37976363

RESUMO

Parkinson's disease (PD) is characterized by conversion of soluble α-synuclein (αS) into intraneuronal aggregates and degeneration of neurons and neuronal processes. Indications that women with early-stage PD display milder neurodegenerative features suggest that female sex partially protects against αS pathology. We previously reported that female sex and estradiol improved αS homeostasis and PD-like phenotypes in E46K-amplified (3K) αS mice. Here, we aimed to further dissect mechanisms that drive this sex dimorphism early in disease. We observed that synaptic abnormalities were delayed in females and improved by estradiol, mediated by local estrogen receptor alpha (ERα). Aberrant ERα distribution in 3K compared to wild-type mice was paired with its decreased palmitoylation. Treatment with ML348, a de-palmitoylation inhibitor, increased ERα availability and soluble αS homeostasis, ameliorating synaptic plasticity and cognitive and motor phenotypes. Our finding that sex differences in early-disease αS-induced synaptic impairment in 3KL mice are in part mediated by palmitoylated ERα may have functional and pathogenic implications for clinical PD.


Assuntos
Doença de Parkinson , Sinucleinopatias , Animais , Feminino , Humanos , Masculino , Camundongos , Modelos Animais de Doenças , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Hipocampo/patologia , Lipoilação , Camundongos Transgênicos , Doença de Parkinson/genética
6.
NPJ Parkinsons Dis ; 9(1): 4, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646701

RESUMO

In Parkinson's disease and other synucleinopathies, the elevation of α-synuclein phosphorylated at Serine129 (pS129) is a widely cited marker of pathology. However, the physiological role for pS129 has remained undefined. Here we use multiple approaches to show for the first time that pS129 functions as a physiological regulator of neuronal activity. Neuronal activity triggers a sustained increase of pS129 in cultured neurons (200% within 4 h). In accord, brain pS129 is elevated in environmentally enriched mice exhibiting enhanced long-term potentiation. Activity-dependent α-synuclein phosphorylation is S129-specific, reversible, confers no cytotoxicity, and accumulates at synapsin-containing presynaptic boutons. Mechanistically, our findings are consistent with a model in which neuronal stimulation enhances Plk2 kinase activity via a calcium/calcineurin pathway to counteract PP2A phosphatase activity for efficient phosphorylation of membrane-bound α-synuclein. Patch clamping of rat SNCA-/- neurons expressing exogenous wild-type or phospho-incompetent (S129A) α-synuclein suggests that pS129 fine-tunes the balance between excitatory and inhibitory neuronal currents. Consistently, our novel S129A knock-in (S129AKI) mice exhibit impaired hippocampal plasticity. The discovery of a key physiological function for pS129 has implications for understanding the role of α-synuclein in neurotransmission and adds nuance to the interpretation of pS129 as a synucleinopathy biomarker.

7.
Acta Neuropathol Commun ; 10(1): 82, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659116

RESUMO

Based on immunostainings and biochemical analyses, certain post-translationally modified alpha-synuclein (aSyn) variants, including C-terminally truncated (CTT) and Serine-129 phosphorylated (pSer129) aSyn, are proposed to be involved in the pathogenesis of synucleinopathies such as Parkinson's disease with (PDD) and without dementia (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). However, quantitative information about aSyn proteoforms in the human brain in physiological and different pathological conditions is still limited. To address this, we generated sequential biochemical extracts of the substantia nigra, putamen and hippocampus from 28 donors diagnosed and neuropathologically-confirmed with different synucleinopathies (PD/PDD/DLB/MSA), as well as Alzheimer's disease, progressive supranuclear palsy, and aged normal subjects. The tissue extracts were used to build a reverse phase array including 65 aSyn antibodies for detection. In this multiplex approach, we observed increased immunoreactivity in donors with synucleinopathies compared to controls in detergent-insoluble fractions, mainly for antibodies against CT aSyn and pSer129 aSyn. In addition, despite of the restricted sample size, clustering analysis suggested disease-specific immunoreactivity signatures in patient groups with different synucleinopathies. We aimed to validate and quantify these findings using newly developed immunoassays towards total, 119 and 122 CTT, and pSer129 aSyn. In line with previous studies, we found that synucleinopathies shared an enrichment of post-translationally modified aSyn in detergent-insoluble fractions compared to the other analyzed groups. Our measurements allowed for a quantitative separation of PDD/DLB patients from other synucleinopathies based on higher detergent-insoluble pSer129 aSyn concentrations in the hippocampus. In addition, we found that MSA stood out due to enrichment of CTT and pSer129 aSyn also in the detergent-soluble fraction of the SN and putamen. Together, our results achieved by multiplexed and quantitative immunoassay-based approaches in human brain extracts of a limited sample set point to disease-specific biochemical aSyn proteoform profiles in distinct neurodegenerative disorders.


Assuntos
Doença por Corpos de Lewy , Atrofia de Múltiplos Sistemas , Sinucleinopatias , Idoso , Encéfalo/patologia , Detergentes , Humanos , Doença por Corpos de Lewy/patologia , Atrofia de Múltiplos Sistemas/patologia , alfa-Sinucleína/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34326260

RESUMO

Loss-of-function mutations in acid beta-glucosidase 1 (GBA1) are among the strongest genetic risk factors for Lewy body disorders such as Parkinson's disease (PD) and Lewy body dementia (DLB). Altered lipid metabolism in PD patient-derived neurons, carrying either GBA1 or PD αS mutations, can shift the physiological α-synuclein (αS) tetramer-monomer (T:M) equilibrium toward aggregation-prone monomers. A resultant increase in pSer129+ αS monomers provides a likely building block for αS aggregates. 3K αS mice, representing a neuropathological amplification of the E46K PD-causing mutation, have decreased αS T:M ratios and vesicle-rich αS+ aggregates in neurons, accompanied by a striking PD-like motor syndrome. We asked whether enhancing glucocerebrosidase (GCase) expression could benefit αS dyshomeostasis by delivering an adeno-associated virus (AAV)-human wild-type (wt) GBA1 vector into the brains of 3K neonates. Intracerebroventricular AAV-wtGBA1 at postnatal day 1 resulted in prominent forebrain neuronal GCase expression, sustained through 6 mo. GBA1 attenuated behavioral deficits both in working memory and fine motor performance tasks. Furthermore, wtGBA1 increased αS solubility and the T:M ratio in both 3K-GBA mice and control littermates and reduced pS129+ and lipid-rich aggregates in 3K-GBA. We observed GCase distribution in more finely dispersed lysosomes, in which there was increased GCase activity, lysosomal cathepsin D and B maturation, decreased perilipin-stabilized lipid droplets, and a normalized TFEB translocation to the nucleus, all indicative of improved lysosomal function and lipid turnover. Therefore, a prolonged increase of the αS T:M ratio by elevating GCase activity reduced the lipid- and vesicle-rich aggregates and ameliorated PD-like phenotypes in mice, further supporting lipid modulating therapies in PD.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Glucosilceramidase/metabolismo , alfa-Sinucleína/metabolismo , Animais , Animais Recém-Nascidos , Glucosilceramidase/genética , Metabolismo dos Lipídeos , Lipídeos/química , Aprendizagem em Labirinto , Camundongos , Atividade Motora , Proteínas Recombinantes , alfa-Sinucleína/química
9.
Acta Neuropathol ; 142(3): 423-448, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34115198

RESUMO

Various post-translationally modified (PTM) proteoforms of alpha-synuclein (aSyn)-including C-terminally truncated (CTT) and Serine 129 phosphorylated (Ser129-p) aSyn-accumulate in Lewy bodies (LBs) in different regions of the Parkinson's disease (PD) brain. Insight into the distribution of these proteoforms within LBs and subcellular compartments may aid in understanding the orchestration of Lewy pathology in PD. We applied epitope-specific antibodies against CTT and Ser129-p aSyn proteoforms and different aSyn domains in immunohistochemical multiple labelings on post-mortem brain tissue from PD patients and non-neurological, aged controls, which were scanned using high-resolution 3D multicolor confocal and stimulated emission depletion (STED) microscopy. Our multiple labeling setup highlighted a consistent onion skin-type 3D architecture in mature nigral LBs in which an intricate and structured-appearing framework of Ser129-p aSyn and cytoskeletal elements encapsulates a core enriched in CTT aSyn species. By label-free CARS microscopy we found that enrichments of proteins and lipids were mainly localized to the central portion of nigral aSyn-immunopositive (aSyn+) inclusions. Outside LBs, we observed that 122CTT aSyn+ punctae localized at mitochondrial membranes in the cytoplasm of neurons in PD and control brains, suggesting a physiological role for 122CTT aSyn outside of LBs. In contrast, very limited to no Ser129-p aSyn immunoreactivity was observed in brains of non-neurological controls, while the alignment of Ser129-p aSyn in a neuronal cytoplasmic network was characteristic for brains with (incidental) LB disease. Interestingly, Ser129-p aSyn+ network profiles were not only observed in neurons containing LBs but also in neurons without LBs particularly in donors at early disease stage, pointing towards a possible subcellular pathological phenotype preceding LB formation. Together, our high-resolution and 3D multicolor microscopy observations in the post-mortem human brain provide insights into potential mechanisms underlying a regulated LB morphogenesis.


Assuntos
Química Encefálica , Doença de Parkinson/metabolismo , Frações Subcelulares/metabolismo , alfa-Sinucleína/metabolismo , Idoso , Bancos de Espécimes Biológicos , Citoplasma/patologia , Citoplasma/ultraestrutura , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Humanos , Corpos de Inclusão/patologia , Corpos de Inclusão/ultraestrutura , Corpos de Lewy/metabolismo , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Neurônios/patologia , Neurônios/ultraestrutura , Processamento de Proteína Pós-Traducional , alfa-Sinucleína/genética
10.
Front Neurosci ; 14: 570019, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324142

RESUMO

Gaining insight to pathologically relevant processes in continuous volumes of unstained brain tissue is important for a better understanding of neurological diseases. Many pathological processes in neurodegenerative disorders affect myelinated axons, which are a critical part of the neuronal circuitry. Cryo ptychographic X-ray computed tomography in the multi-keV energy range is an emerging technology providing phase contrast at high sensitivity, allowing label-free and non-destructive three dimensional imaging of large continuous volumes of tissue, currently spanning up to 400,000 µm3. This aspect makes the technique especially attractive for imaging complex biological material, especially neuronal tissues, in combination with downstream optical or electron microscopy techniques. A further advantage is that dehydration, additional contrast staining, and destructive sectioning/milling are not required for imaging. We have developed a pipeline for cryo ptychographic X-ray tomography of relatively large, hydrated and unstained biological tissue volumes beyond what is typical for the X-ray imaging, using human brain tissue and combining the technique with complementary methods. We present four imaged volumes of a Parkinson's diseased human brain and five volumes from a non-diseased control human brain using cryo ptychographic X-ray tomography. In both cases, we distinguish neuromelanin-containing neurons, lipid and melanic pigment, blood vessels and red blood cells, and nuclei of other brain cells. In the diseased sample, we observed several swellings containing dense granular material resembling clustered vesicles between the myelin sheaths arising from the cytoplasm of the parent oligodendrocyte, rather than the axoplasm. We further investigated the pathological relevance of such swollen axons in adjacent tissue sections by immunofluorescence microscopy for phosphorylated alpha-synuclein combined with multispectral imaging. Since cryo ptychographic X-ray tomography is non-destructive, the large dataset volumes were used to guide further investigation of such swollen axons by correlative electron microscopy and immunogold labeling post X-ray imaging, a possibility demonstrated for the first time. Interestingly, we find that protein antigenicity and ultrastructure of the tissue are preserved after the X-ray measurement. As many pathological processes in neurodegeneration affect myelinated axons, our work sets an unprecedented foundation for studies addressing axonal integrity and disease-related changes in unstained brain tissues.

11.
Nat Neurosci ; 22(7): 1099-1109, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31235907

RESUMO

Parkinson's disease, the most common age-related movement disorder, is a progressive neurodegenerative disease with unclear etiology. Key neuropathological hallmarks are Lewy bodies and Lewy neurites: neuronal inclusions immunopositive for the protein α-synuclein. In-depth ultrastructural analysis of Lewy pathology is crucial to understanding pathogenesis of this disease. Using correlative light and electron microscopy and tomography on postmortem human brain tissue from Parkinson's disease brain donors, we identified α-synuclein immunopositive Lewy pathology and show a crowded environment of membranes therein, including vesicular structures and dysmorphic organelles. Filaments interspersed between the membranes and organelles were identifiable in many but not all α-synuclein inclusions. Crowding of organellar components was confirmed by stimulated emission depletion (STED)-based super-resolution microscopy, and high lipid content within α-synuclein immunopositive inclusions was corroborated by confocal imaging, Fourier-transform coherent anti-Stokes Raman scattering infrared imaging and lipidomics. Applying such correlative high-resolution imaging and biophysical approaches, we discovered an aggregated protein-lipid compartmentalization not previously described in the Parkinsons' disease brain.


Assuntos
Membranas Intracelulares/ultraestrutura , Corpos de Lewy/ultraestrutura , Doença por Corpos de Lewy/patologia , Lipídeos de Membrana/análise , Organelas/ultraestrutura , Doença de Parkinson/patologia , alfa-Sinucleína/análise , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Hipocampo/química , Hipocampo/ultraestrutura , Humanos , Imageamento Tridimensional , Corpos de Lewy/química , Doença por Corpos de Lewy/metabolismo , Mesencéfalo/química , Mesencéfalo/ultraestrutura , Microscopia Confocal , Microscopia Eletrônica/métodos , Microscopia de Fluorescência , Doença de Parkinson/metabolismo , Substância Negra/química , Substância Negra/ultraestrutura , Sequenciamento do Exoma
12.
Mol Neurobiol ; 56(2): 1344-1355, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29948939

RESUMO

Mutations in the GBA gene, encoding the lysosomal hydrolase glucocerebrosidase (GCase), are the most common known genetic risk factor for Parkinson's disease (PD) and dementia with Lewy bodies (DLB). The present study aims to gain more insight into changes in lysosomal activity in different brain regions of sporadic PD and DLB patients, screened for GBA variants. Enzymatic activities of GCase, ß-hexosaminidase, and cathepsin D were measured in the frontal cortex, putamen, and substantia nigra (SN) of a cohort of patients with advanced PD and DLB as well as age-matched non-demented controls (n = 15/group) using fluorometric assays. Decreased activity of GCase (- 21%) and of cathepsin D (- 15%) was found in the SN and frontal cortex of patients with PD and DLB compared to controls, respectively. Population stratification was applied based on GBA genotype, showing substantially lower GCase activity (~ - 40%) in GBA variant carriers in all regions. GCase activity was further significantly decreased in the SN of PD and DLB patients without GBA variants in comparison to controls without GBA variants. Our results show decreased GCase activity in brains of PD and DLB patients with and without GBA variants, most pronounced in the SN. The results of our study confirm findings from previous studies, suggesting a role for GCase in GBA-associated as well as sporadic PD and DLB.


Assuntos
Demência/genética , Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/genética , Lisossomos/metabolismo , Doença de Parkinson/genética , Idoso , Idoso de 80 Anos ou mais , Feminino , Genótipo , Humanos , Corpos de Lewy/patologia , Masculino , Pessoa de Meia-Idade , Substância Negra/metabolismo
13.
Neurobiol Dis ; 121: 205-213, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30236861

RESUMO

Synucleinopathies including Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) are characterized by the accumulation of abnormal α-synuclein in intraneuronal inclusions, named Lewy bodies. Mutations in GBA1, the gene encoding the lysosomal hydrolase glucocerebrosidase, have been identified as the most common genetic risk factor for PD and DLB. However, despite extensive research, the mechanism by which glucocerebrosidase dysfunction increases the risk for PD or DLB still remains elusive. In our study we expand the toolbox for PD-DLB post-mortem studies by introducing new quantitative biochemical assays for glucocerebrosidase and α-synuclein. Applying causal modelling, we determine how these parameters are interrelated and ultimately impact disease manifestation. We developed quantitative immuno-based assays for glucocerebrosidase and α-synuclein (total and phosphorylated at Serine 129) protein levels, as well as a liquid chromatography-mass spectrometry method for the detection of the glucocerebrosidase lipid substrate glucosylsphingosine. These assays were applied on tissue samples from frontal cortex, putamen and substantia nigra of PD (n = 15) and DLB (n = 15) patients and age-matched non-demented controls (n = 15). Our results confirm elevated p-129 over total α-synuclein levels in the insoluble fraction of PD and DLB post-mortem brain tissue and we found significantly increased α-synuclein levels in the soluble fractions in PD and DLB. Furthermore, we identified an inverse correlation between reduced glucocerebrosidase enzyme activity and protein levels with increased glucosylsphingosine levels. In the substantia nigra, a brain region particularly vulnerable in Parkinson's disease, we found a significant correlation between glucocerebrosidase protein reduction and increased p129/total α-synuclein ratios. We assessed the direction and strength of the interrelation between all measured parameters by confirmatory path analysis. Interestingly, we found that glucocerebrosidase dysfunction impacts the PD-DLB status by increasing α-synuclein ratios in the substantia nigra, which was partly mediated by increasing glucosylsphingosine levels. In conclusion, we show that the introduced immuno-based assays enable the quantitative assessment of glucocerebrosidase and α-synuclein parameters in post-mortem brain. In the substantia nigra, reduced glucocerebrosidase levels contribute to the increase in α-synuclein levels and to PD-DLB disease manifestation partly by increasing its glycolipid substrate glucosylsphingosine. This interrelation between glucocerebrosidase, glucosylsphingosine and α-synuclein parameters supports the hypothesis that glucocerebrosidase acts as a modulator of PD-DLB.


Assuntos
Encéfalo/metabolismo , Glucosilceramidase/metabolismo , Doença por Corpos de Lewy/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Cromatografia Líquida/métodos , Interpretação Estatística de Dados , Feminino , Glucosilceramidase/análise , Humanos , Imunoensaio/métodos , Masculino , Espectrometria de Massas/métodos , alfa-Sinucleína/análise
14.
Int J Biochem Cell Biol ; 87: 34-37, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28359775

RESUMO

The α-mannosidase activity in human frontal gyrus, cerebrospinal fluid and plasma has been analyzed by DEAE-cellulose chromatography to investigate the origin of the α-mannosidase activity in cerebrospinal fluid (CSF). The profile of α-mannosidase isoenzymes obtained in CSF was similar to that in the frontal gyrus but different from that in human plasma. In particular the two characteristic peaks of lysosomal α-mannosidase, A and B, which have a pH-optimum of 4.5 and are found in human tissues, were present in both the frontal gyrus and CSF. In contrast the majority of α-mannosidase activity in human plasma was due to the so called intermediate form, which has a pH-optimum of 5.5. The results suggest that the intermediate form of α-mannosidase in plasma does not cross the blood-brain barrier and that the α-mannosidase activity present in the cerebrospinal fluid is of lysosomal type and of brain origin. Thus the α-mannosidase activity in cerebrospinal fluid might mirror the brain pathological changes linked to neurodegenerative disorders such as Parkinson's disease.


Assuntos
alfa-Manosidase/líquido cefalorraquidiano , Lobo Frontal/metabolismo , Humanos , Especificidade de Órgãos , alfa-Manosidase/sangue
15.
Mol Neurodegener ; 12(1): 11, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28122627

RESUMO

Converging evidence from genetic, pathological and experimental studies have increasingly suggested an important role for autophagy impairment in Parkinson's Disease (PD). Genetic studies have identified mutations in genes encoding for components of the autophagy-lysosomal pathway (ALP), including glucosidase beta acid 1 (GBA1), that are associated with increased risk for developing PD. Observations in PD brain tissue suggest an aberrant regulation of autophagy associated with the aggregation of α-synuclein (α-syn). As autophagy is one of the main systems involved in the proteolytic degradation of α-syn, pharmacological enhancement of autophagy may be an attractive strategy to combat α-syn aggregation in PD. Here, we review the potential of autophagy enhancement as disease-modifying therapy in PD based on preclinical evidence. In particular, we provide an overview of the molecular regulation of autophagy and targets for pharmacological modulation within the ALP. In experimental models, beneficial effects on multiple pathological processes involved in PD, including α-syn aggregation, cell death, oxidative stress and mitochondrial dysfunction, have been demonstrated using the autophagy enhancers rapamycin and lithium. However, selectivity of these agents is limited, while upstream ALP signaling proteins are involved in many other pathways than autophagy. Broad stimulation of autophagy may therefore cause a wide spectrum of dose-dependent side-effects, suggesting that its clinical applicability is limited. However, recently developed agents selectively targeting core ALP components, including Transcription Factor EB (TFEB), lysosomes, GCase as well as chaperone-mediated autophagy regulators, exert more specific effects on molecular pathogenetic processes causing PD. To conclude, the targeted manipulation of downstream ALP components, rather than broad autophagy stimulation, may be an attractive strategy for the development of novel pharmacological therapies in PD. Further characterization of dysfunctional autophagy in different stages and molecular subtypes of PD in combination with the clinical translation of downstream autophagy regulation offers exciting new avenues for future drug development.


Assuntos
Autofagia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Animais , Humanos
16.
Mov Disord ; 31(6): 791-801, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26923732

RESUMO

Lysosomal impairment is increasingly recognized as a central event in the pathophysiology of PD. Genetic associations between lysosomal storage disorders, including Gaucher disease and PD, highlight common risk factors and pathological mechanisms. Because the autophagy-lysosomal system is involved in the intralysosomal hydrolysis of dysfunctional proteins, lysosomal impairment may contribute to α-synuclein aggregation in PD. The degradation of α-synuclein is a complex process involving different proteolytic mechanisms depending on protein burden, folding, posttranslational modifications, and yet unknown factors. In this review, evidence for lysosomal dysfunction in PD and its intimate relationship with α-synuclein aggregation are discussed, after which the question of whether lysosomal proteins may serve as diagnostic biomarkers for PD is addressed. Changes in lysosomal enzymes, such as reduced glucocerebrosidase and cathepsin levels, have been observed in affected brain regions in PD patients. The detection of lysosomal proteins in CSF may provide a read-out of lysosomal dysfunction in PD and holds promise for the development of diagnostic PD biomarkers. Initial PD biomarker studies demonstrated altered lysosomal enzyme activities in CSF of PD patients when compared with controls. However, CSF lysosomal enzyme activities alone could not discriminate between PD patients and controls. The combination of CSF lysosomal markers with α-synuclein species and indicators of mitochondrial dysfunction, inflammation, and other pathological proteins in PD may be able to facilitate a more accurate diagnosis of PD. Further CSF biomarker studies are needed to investigate the utility of CSF lysosomal proteins as measures of disease state and disease progression in PD. © 2016 International Parkinson and Movement Disorder Society.


Assuntos
Biomarcadores/líquido cefalorraquidiano , Doenças por Armazenamento dos Lisossomos/líquido cefalorraquidiano , Doença de Parkinson/líquido cefalorraquidiano , Proteínas/metabolismo , alfa-Sinucleína/metabolismo , Humanos
17.
Acta Neuropathol Commun ; 2: 90, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25099483

RESUMO

Next to α-synuclein deposition, microglial activation is a prominent pathological feature in the substantia nigra (SN) of Parkinson's disease (PD) patients. Little is known, however, about the different phenotypes of microglia and how they change during disease progression, in the SN or in another brain region, like the hippocampus (HC), which is implicated in dementia and depression, important non-motor symptoms in PD. We studied phenotypes and activation of microglia in the SN and HC of established PD patients (Braak PD stage 4­6), matched controls (Braak PD stage 0) and of incidental Lewy Body disease (iLBD) cases (Braak PD stage 1­3) that are considered a prodromal state of PD. As recent experimental studies suggested that toll-like receptor 2 (TLR2) mediates α-synuclein triggered microglial activation, we also studied whether TLR2 expression is indeed related to pathology in iLBD and PD patients. A clear α-synuclein pathology-related increase in amoeboid microglia was present in the HC and SN in PD. Also, morphologically primed/reactive microglial cells, and a profound increase in microglial TLR2 expression were apparent in iLBD, but not PD, cases, indicative of an early activational response to PD pathology. Moreover, TLR2 was differentially expressed between the SN and HC, consistent with a region-specific pattern of microglial activation. In conclusion, the regional changes in microglial phenotype and TLR2 expression in primed/reactive microglia in the SN and HC of iLBD cases indicate that TLR2 may play a prominent role in the microglial-mediated responses that could be important for PD progression.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Microglia/metabolismo , Microglia/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , Substância Negra/metabolismo , Substância Negra/patologia , Receptor 2 Toll-Like/metabolismo , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...